Аннотации:
Consider a unital $C^*$-algebra $\mathcal{A}$. Let   $n\geq 2$ and let    $P_1, \ldots , P_n$ be projections in   $\mathcal{A}$  such that   $P_1 + \ldots +P_n=I$. We costruct $\mathcal{P}_n\colon \mathcal{A}\to \mathcal{A}$  being a block projection operator   given   by the formula  $\mathcal{P}_n(X)=\sum_{k=1}^n P_kXP_k$  for   all   $X\in \mathcal{A}$. 
For a  weight  $\varphi$ on a von Neumann algebra $\mathcal{A}$, we prove that $\varphi$  is a trace if and only if
$\varphi (\mathcal{P}_2(A))=\varphi (A)$ for all $A\in \mathcal{A}^+$. 
We also prove that if $\mathcal{A}$ is a von Neumann algebra then
for a normal  semifinite  weight  $\varphi$ on $\mathcal{A}$  the following conditions are equivalent: {\rm (i)}  $\varphi$ is a trace; {\rm (ii)}  $\varphi((A^{m/2}B^mA^{m/2} )^k)\leq\varphi ((A^{k/2}B^kA^{k/2})^m)$ for all $A, B\in\mathcal{A}^+$ and 
some numbers $k,m \in\mathbb{R}$ such that $k)m)0$;
{\rm (iii)} $\varphi (|\mathcal{P}_n(A)|)\leq\varphi (|A|)$ for all $A\in \mathcal{A}$ and
 for all  projections $P_1, \ldots , P_n\in \mathcal{A}$.
As a consequence, we obtain a criterions for commutativity of von Neumann algebras and  $C^*$-algebras.