Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | |
dc.date.accessioned | 2022-10-10T08:07:44Z | |
dc.date.available | 2022-10-10T08:07:44Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | A. Bikchentaev, Characterization of certain traces on von Neumann algebras // L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications. ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference, Al Ain, UAE, March 28-April 1, 2021, Springer, 2022. -- P. 279--289. | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/173179 | |
dc.description.abstract | Consider a unital $C^*$-algebra $\mathcal{A}$. Let $n\geq 2$ and let $P_1, \ldots , P_n$ be projections in $\mathcal{A}$ such that $P_1 + \ldots +P_n=I$. We costruct $\mathcal{P}_n\colon \mathcal{A}\to \mathcal{A}$ being a block projection operator given by the formula $\mathcal{P}_n(X)=\sum_{k=1}^n P_kXP_k$ for all $X\in \mathcal{A}$. For a weight $\varphi$ on a von Neumann algebra $\mathcal{A}$, we prove that $\varphi$ is a trace if and only if $\varphi (\mathcal{P}_2(A))=\varphi (A)$ for all $A\in \mathcal{A}^+$. We also prove that if $\mathcal{A}$ is a von Neumann algebra then for a normal semifinite weight $\varphi$ on $\mathcal{A}$ the following conditions are equivalent: {\rm (i)} $\varphi$ is a trace; {\rm (ii)} $\varphi((A^{m/2}B^mA^{m/2} )^k)\leq\varphi ((A^{k/2}B^kA^{k/2})^m)$ for all $A, B\in\mathcal{A}^+$ and some numbers $k,m \in\mathbb{R}$ such that $k)m)0$; {\rm (iii)} $\varphi (|\mathcal{P}_n(A)|)\leq\varphi (|A|)$ for all $A\in \mathcal{A}$ and for all projections $P_1, \ldots , P_n\in \mathcal{A}$. As a consequence, we obtain a criterions for commutativity of von Neumann algebras and $C^*$-algebras. | |
dc.language.iso | en | |
dc.relation.ispartofseries | L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications. ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference, Al Ain, UAE, March 28-April 1, 2021 | |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | linear operator | |
dc.subject | von Neumann algebra | |
dc.subject | $C^*$-algebra | |
dc.subject | block projection operator | |
dc.subject | weight | |
dc.subject | trace | |
dc.subject | tracial inequality | |
dc.subject | commutativity | |
dc.subject.other | Математика | |
dc.title | Characterization of certain traces on von Neumann algebras | |
dc.type | Article | |
dc.contributor.org | Институт математики и механики им. Н.И. Лобачевского | |
dc.description.pages | 279-289 | |
dc.relation.ispartofseries-volume | 390 | |
dc.pub-id | 271347 |