Электронный архив

Minimal instances with no weakly stable matching for three-sided problem with cyclic incomplete preferences

Показать сокращенную информацию

dc.contributor Казанский федеральный университет
dc.contributor.author Lerner Eduard Yulevich
dc.contributor.author Lerner Regina Eduardovna
dc.date.accessioned 2023-04-04T08:55:57Z
dc.date.available 2023-04-04T08:55:57Z
dc.date.issued 2023
dc.identifier.citation Lerner E. Yu. Minimal instances with no weakly stable matching for three-sided problem with cyclic incomplete preferences / E. Yu. Lerner, R. E. Lerner / Discrete Mathematics, Algorithms and Applications. - 2023. - Vol. 15. - No. 03, 2250095. https://doi.org/10.1142/S1793830922500951
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/175691
dc.description.abstract Given n men, n women, and n dogs, each man has an incomplete preference list of women, each woman has an incomplete preference list of dogs, and each dog has an incomplete preference list of men. We understand a family as a triple consisting of one man, one woman, and one dog such that the dog belongs to the preference list of the woman, who, in turn, belongs to the preference list of the man, while the latter belongs to the preference list of the dog. We understand a matching as a collection of nonintersecting families (some agents, possibly, remain single). A matching is said to be nonstable, if one can find a man, a woman, and a dog who do not live together currently but each of them would become "happier" if they do. Otherwise, the matching is said to be stable (a weakly stable matching). We give an example of this problem for 𝑛=3 where no stable matching exists. Moreover, we prove the absence of such an example for 𝑛(3. Such an example was known earlier only for 𝑛=6 [P. Biró and E. McDermid, Three-sided stable matchings with cyclic preferences, Algorithmica 58 (2010) 5-18]. The constructed examples also allow one to halve the size of the recently constructed analogous example for complete preference lists [C.-K. Lam and C.G. Plaxton, On the existence of three-dimensional stable matchings with cyclic preferences, in Algorithmic Game Theory, Lecture Notes in Computer Science, Vol. 11801 (Springer, 2019), pp. 329-342].
dc.language.iso en
dc.relation.ispartofseries Discrete Mathematics, Algorithms and Applications
dc.rights открытый доступ
dc.subject incomplete preferences lists
dc.subject three-sided problem
dc.subject cycles
dc.subject weighted directed graphs
dc.subject.other Математика
dc.title Minimal instances with no weakly stable matching for three-sided problem with cyclic incomplete preferences
dc.type Article
dc.contributor.org Институт вычислительной математики и информационных технологий
dc.description.pages 225095-225095
dc.relation.ispartofseries-issue 3
dc.relation.ispartofseries-volume 15
dc.pub-id 278431
dc.identifier.doi 10.1142/S1793830922500951


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика