dc.contributor |
Казанский федеральный университет |
|
dc.contributor.author |
Bikchentaev Airat Midkhatovich |
|
dc.date.accessioned |
2022-10-10T08:07:44Z |
|
dc.date.available |
2022-10-10T08:07:44Z |
|
dc.date.issued |
2022 |
|
dc.identifier.citation |
A. Bikchentaev, Characterization of certain traces on von Neumann algebras // L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications.
ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference,
Al Ain, UAE, March 28-April 1, 2021, Springer, 2022. -- P. 279--289. |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/173179 |
|
dc.description.abstract |
Consider a unital $C^*$-algebra $\mathcal{A}$. Let $n\geq 2$ and let $P_1, \ldots , P_n$ be projections in $\mathcal{A}$ such that $P_1 + \ldots +P_n=I$. We costruct $\mathcal{P}_n\colon \mathcal{A}\to \mathcal{A}$ being a block projection operator given by the formula $\mathcal{P}_n(X)=\sum_{k=1}^n P_kXP_k$ for all $X\in \mathcal{A}$.
For a weight $\varphi$ on a von Neumann algebra $\mathcal{A}$, we prove that $\varphi$ is a trace if and only if
$\varphi (\mathcal{P}_2(A))=\varphi (A)$ for all $A\in \mathcal{A}^+$.
We also prove that if $\mathcal{A}$ is a von Neumann algebra then
for a normal semifinite weight $\varphi$ on $\mathcal{A}$ the following conditions are equivalent: {\rm (i)} $\varphi$ is a trace; {\rm (ii)} $\varphi((A^{m/2}B^mA^{m/2} )^k)\leq\varphi ((A^{k/2}B^kA^{k/2})^m)$ for all $A, B\in\mathcal{A}^+$ and
some numbers $k,m \in\mathbb{R}$ such that $k)m)0$;
{\rm (iii)} $\varphi (|\mathcal{P}_n(A)|)\leq\varphi (|A|)$ for all $A\in \mathcal{A}$ and
for all projections $P_1, \ldots , P_n\in \mathcal{A}$.
As a consequence, we obtain a criterions for commutativity of von Neumann algebras and $C^*$-algebras. |
|
dc.language.iso |
en |
|
dc.relation.ispartofseries |
L. Accardi et al. (eds.), Infinite Dimensional Analysis, Quantum Probability and Applications. ICQPRT 2021 (Springer Proceedings in Mathematics & Statistics 390): QP41 Conference, Al Ain, UAE, March 28-April 1, 2021 |
|
dc.rights |
открытый доступ |
|
dc.subject |
Hilbert space |
|
dc.subject |
linear operator |
|
dc.subject |
von Neumann algebra |
|
dc.subject |
$C^*$-algebra |
|
dc.subject |
block projection operator |
|
dc.subject |
weight |
|
dc.subject |
trace |
|
dc.subject |
tracial inequality |
|
dc.subject |
commutativity |
|
dc.subject.other |
Математика |
|
dc.title |
Characterization of certain traces on von Neumann algebras |
|
dc.type |
Article |
|
dc.contributor.org |
Институт математики и механики им. Н.И. Лобачевского |
|
dc.description.pages |
279-289 |
|
dc.relation.ispartofseries-volume |
390 |
|
dc.pub-id |
271347 |
|