Kazan Federal University Digital Repository

Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras

Show simple item record

dc.contributor Казанский федеральный университет
dc.contributor.author Bikchentaev Airat Midkhatovich
dc.date.accessioned 2019-10-01T07:17:21Z
dc.date.available 2019-10-01T07:17:21Z
dc.date.issued 2019
dc.identifier.citation Bikchentaev A.M. Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras / A.M. Bikchentaev // Lobachevskii Journal of Mathematics. - 2019. - Vol. 40, No. 10. - P. 1450-1454.
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/151916
dc.description.abstract Let τ be a faithful normal semifinite trace on a von Neumann algebraM, and M^u be a unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈M is an isometry (or a coisometry) and U - V is τ-compact for some U ∈M^u then V ∈M^u. Let M be a factor with a faithful normal trace τ on it. If V ∈M^{is} an isometry (or a coisometry) and U - V is compact relative toMfor some U ∈M^u then V ∈M^u. We also obtain some corollaries.
dc.language.iso en
dc.relation.ispartofseries Lobachevskii Journal of Mathematics
dc.rights открытый доступ
dc.subject Hilbert space
dc.subject linear operator
dc.subject isometry
dc.subject unitary operator
dc.subject idempotent
dc.subject tripotent
dc.subject projection
dc.subject compact operator
dc.subject von Neumann algebra
dc.subject trace
dc.subject rearrangement
dc.subject.other Математика
dc.title Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras
dc.type Article
dc.contributor.org Институт вычислительной математики и информационных технологий
dc.description.pages 1450-1454
dc.relation.ispartofseries-issue 10
dc.relation.ispartofseries-volume 40
dc.pub-id 210041
dc.identifier.doi 10.1134/S1995080219100068


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account