Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | |
dc.date.accessioned | 2019-10-01T07:17:21Z | |
dc.date.available | 2019-10-01T07:17:21Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Bikchentaev A.M. Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras / A.M. Bikchentaev // Lobachevskii Journal of Mathematics. - 2019. - Vol. 40, No. 10. - P. 1450-1454. | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/151916 | |
dc.description.abstract | Let τ be a faithful normal semifinite trace on a von Neumann algebraM, and M^u be a unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈M is an isometry (or a coisometry) and U - V is τ-compact for some U ∈M^u then V ∈M^u. Let M be a factor with a faithful normal trace τ on it. If V ∈M^{is} an isometry (or a coisometry) and U - V is compact relative toMfor some U ∈M^u then V ∈M^u. We also obtain some corollaries. | |
dc.language.iso | en | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | linear operator | |
dc.subject | isometry | |
dc.subject | unitary operator | |
dc.subject | idempotent | |
dc.subject | tripotent | |
dc.subject | projection | |
dc.subject | compact operator | |
dc.subject | von Neumann algebra | |
dc.subject | trace | |
dc.subject | rearrangement | |
dc.subject.other | Математика | |
dc.title | Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras | |
dc.type | Article | |
dc.contributor.org | Институт вычислительной математики и информационных технологий | |
dc.description.pages | 1450-1454 | |
dc.relation.ispartofseries-issue | 10 | |
dc.relation.ispartofseries-volume | 40 | |
dc.pub-id | 210041 | |
dc.identifier.doi | 10.1134/S1995080219100068 |