dc.contributor |
Казанский федеральный университет |
|
dc.contributor.author |
Bikchentaev Airat Midkhatovich |
|
dc.date.accessioned |
2019-10-01T07:17:21Z |
|
dc.date.available |
2019-10-01T07:17:21Z |
|
dc.date.issued |
2019 |
|
dc.identifier.citation |
Bikchentaev A.M. Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras / A.M. Bikchentaev // Lobachevskii Journal of Mathematics. - 2019. - Vol. 40, No. 10. - P. 1450-1454. |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/151916 |
|
dc.description.abstract |
Let τ be a faithful normal semifinite trace on a von Neumann algebraM, and M^u be a unitary part of M. We prove a new property of rearrangements of some tripotents in M. If V ∈M is an isometry (or a coisometry) and U - V is τ-compact for some U ∈M^u then V ∈M^u. Let M
be a factor with a faithful normal trace τ on it. If
V ∈M^{is} an isometry (or a coisometry) and U - V
is compact relative toMfor some U ∈M^u then V ∈M^u. We also obtain some corollaries. |
|
dc.language.iso |
en |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.rights |
открытый доступ |
|
dc.subject |
Hilbert space |
|
dc.subject |
linear operator |
|
dc.subject |
isometry |
|
dc.subject |
unitary operator |
|
dc.subject |
idempotent |
|
dc.subject |
tripotent |
|
dc.subject |
projection |
|
dc.subject |
compact operator |
|
dc.subject |
von Neumann algebra |
|
dc.subject |
trace |
|
dc.subject |
rearrangement |
|
dc.subject.other |
Математика |
|
dc.title |
Rearrangements of Tripotents and Differences of Isometries in Semifinite von Neumann Algebras |
|
dc.type |
Article |
|
dc.contributor.org |
Институт вычислительной математики и информационных технологий |
|
dc.description.pages |
1450-1454 |
|
dc.relation.ispartofseries-issue |
10 |
|
dc.relation.ispartofseries-volume |
40 |
|
dc.pub-id |
210041 |
|
dc.identifier.doi |
10.1134/S1995080219100068 |
|