Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | |
dc.date.accessioned | 2018-02-06T13:33:28Z | |
dc.date.available | 2018-02-06T13:33:28Z | |
dc.date.issued | 2018 | |
dc.identifier.citation | Bikchentaev A.M., On convexity and compactness of operator "intervals'' on Hilbert space / A.M. Bikchentaev // Internat. sci. confer. "Infinite-dimensional analysis and control theory" dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin (Moscow, January 29 - February 01, 2018). - M., 2018. - P. 4. | |
dc.identifier.uri | http://dspace.kpfu.ru/xmlui/handle/net/118018 | |
dc.description.abstract | We consider a von Neumann algebra $M$ acting on a Hilbert space $H$. For a positive operator $X$ in $M$ we define the operator ``intervals'' $I_X=\{Y=Y^*\in M: \; -X \leq Y \leq X \}$ and $L_X=\{Y \in M: \; |Y| \leq X \}$, where $|Y|=\sqrt{Y^*Y}$. The properties of this operator ``intervals'' are investigated. We prove that a von Neumann algebra $M$ is Abelian if and only if $L_X$ is convex for all $X$ in $M$. We then show for $M=B(H)$, the algebra of all linear bounded operators on $H$, that the operator ``interval'' $I_X$ is compact if and only if an operator $X$ is compact. | |
dc.language.iso | en | |
dc.relation.ispartofseries | Internat. sci. confer. andquot;Infinite-dimensional analysis and control theoryandquot; dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin (Moscow, January 29 - February 01, 2018) | |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | von Neumann algebra | |
dc.subject | operator order | |
dc.subject | convexity | |
dc.subject | compactness | |
dc.subject.other | Математика | |
dc.title | On convexity and compactness of operator ``intervals'' on Hilbert space | |
dc.type | Thesis | |
dc.contributor.org | Институт вычислительной математики и информационных технологий | |
dc.description.pages | ||
dc.pub-id | 173945 |