dc.contributor |
Казанский федеральный университет |
|
dc.contributor.author |
Bikchentaev Airat Midkhatovich |
|
dc.date.accessioned |
2018-02-06T13:33:28Z |
|
dc.date.available |
2018-02-06T13:33:28Z |
|
dc.date.issued |
2018 |
|
dc.identifier.citation |
Bikchentaev A.M., On convexity and compactness of operator "intervals'' on Hilbert space / A.M. Bikchentaev // Internat. sci. confer. "Infinite-dimensional analysis and control theory" dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin (Moscow, January 29 - February 01, 2018). - M., 2018. - P. 4. |
|
dc.identifier.uri |
http://dspace.kpfu.ru/xmlui/handle/net/118018 |
|
dc.description.abstract |
We consider a von Neumann algebra $M$ acting on a
Hilbert space $H$. For a positive operator $X$ in $M$ we define the
operator ``intervals'' $I_X=\{Y=Y^*\in M: \; -X \leq Y \leq X \}$ and
$L_X=\{Y \in M: \; |Y| \leq X \}$, where $|Y|=\sqrt{Y^*Y}$.
The properties of this operator ``intervals'' are investigated.
We prove that a von Neumann algebra $M$ is Abelian if and only if
$L_X$ is convex for all $X$ in $M$. We then show for $M=B(H)$, the algebra of all linear bounded
operators on $H$, that the operator ``interval'' $I_X$ is compact if and only if an operator $X$ is compact. |
|
dc.language.iso |
en |
|
dc.relation.ispartofseries |
Internat. sci. confer. andquot;Infinite-dimensional analysis and control theoryandquot; dedicated to the centenary of the outstanding Russian mathematician S.V. Fomin (Moscow, January 29 - February 01, 2018) |
|
dc.rights |
открытый доступ |
|
dc.subject |
Hilbert space |
|
dc.subject |
von Neumann algebra |
|
dc.subject |
operator order |
|
dc.subject |
convexity |
|
dc.subject |
compactness |
|
dc.subject.other |
Математика |
|
dc.title |
On convexity and compactness of operator ``intervals'' on Hilbert space |
|
dc.type |
Thesis |
|
dc.contributor.org |
Институт вычислительной математики и информационных технологий |
|
dc.description.pages |
|
|
dc.pub-id |
173945 |
|