Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Обносов Юрий Викторович | |
dc.contributor.author | Казарин Анатолий Юрьевич | |
dc.date.accessioned | 2015-07-27T10:24:55Z | |
dc.date.available | 2015-07-27T10:24:55Z | |
dc.date.issued | 2015 | |
dc.identifier.citation | Kazarin A.Yu., Obnosov Yu.V. An R-linear conjugation problem for two concentric annuli // Lobachevskii Journal of Mathematics. - 2015. - V.36 (2). P. 215-224. DOI: 10.1134/S1995080215020201 | |
dc.identifier.issn | ||
dc.identifier.uri | http://dspace.kpfu.ru/xmlui/handle/net/27321 | |
dc.description.abstract | We consider an infinite planar four-phase heterogeneous medium with three concentric circles as a boundary between isotropic medium's components of distinct resistivities/conductivities. It is supposed that the velocity field in this structure is generated by a finite set of arbitrary multipoles. We distinguish two cases when multipoles are inside of medium's components or at the interface. An exact analytical solution of the corresponding ${\mathbb R}$-linear conjugation boundary value problem is derived for both cases. Examples of flow nets (isobars and streamlines) are presented | |
dc.language.iso | en | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.rights | открытый доступ | |
dc.subject | refraction | |
dc.subject | heterogeneous media | |
dc.subject | ${\mathbb R}$-linear conjugation problem | |
dc.subject | analytic functions | |
dc.subject.other | Математика | |
dc.title | An R-linear conjugation problem for two concentric annuli | |
dc.type | Article | |
dc.contributor.org | Институт математики и механики им.Н.И.Лобачевского | |
dc.description.pages | ||
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 36 | |
dc.pub-id | 109545 |