Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | |
dc.date.accessioned | 2025-05-30T06:59:44Z | |
dc.date.available | 2025-05-30T06:59:44Z | |
dc.date.issued | 2025 | |
dc.identifier.citation | A. M. Bikchentaev, Hyponormal mesurable operators affiliated to a semifinite von Neumann algebra // Siberian Mathematical Journal. - 2025. - Vol. 66. - No. 3. - pp. 656-663. | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/185259 | |
dc.description.abstract | Let τ be a faithful normal semifinite trace on a von Neumann algebra M. We study the cases when a hyponormal τ-measurable operator (or a estriction of it) is normal. We obtain a criterion for the hyponormality of a -measurable operator in terms of its singular value function. The set of all τ-measurable hyponormal operators is closed in the topology of τ -local convergence in measure. This assertion is a generalization of Problem 226 from the book "Halmos P.R., A Hilbert Space Problem Book, Second edition, Springer, New York (1982)" to the setting of unbounded operators. The set of all τ-measurable cohyponormal operators is closed in the topology of τ -local convergence in measure if and only if the von Neumann algebra M is finite. | |
dc.language.iso | en | |
dc.relation.ispartofseries | SIBERIAN MATHEMATICAL JOURNAL | |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | von Neumann algebra | |
dc.subject | normal trace | |
dc.subject | measurable operator | |
dc.subject | hyponormal operator 1 | |
dc.subject.other | Математика | |
dc.title | Hyponormal mesurable operators affiliated to a semifinite von Neumann algebra | |
dc.type | Article | |
dc.contributor.org | Институт математики и механики им. Н.И. Лобачевского | |
dc.description.pages | 656-663 | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 66 | |
dc.pub-id | 314207 | |
dc.identifier.doi | 10.1134/S0037446625030061 |