dc.contributor |
Казанский федеральный университет |
|
dc.contributor.author |
Bikchentaev Airat Midkhatovich |
|
dc.date.accessioned |
2025-05-30T06:59:44Z |
|
dc.date.available |
2025-05-30T06:59:44Z |
|
dc.date.issued |
2025 |
|
dc.identifier.citation |
A. M. Bikchentaev, Hyponormal mesurable operators affiliated to a semifinite von Neumann algebra // Siberian Mathematical Journal. - 2025. - Vol. 66. - No. 3. - pp. 656-663. |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/185259 |
|
dc.description.abstract |
Let τ be a faithful normal semifinite trace on a von Neumann algebra M. We study the cases when a hyponormal τ-measurable operator (or a estriction of it) is normal. We obtain a criterion for the hyponormality of a -measurable operator in terms of its singular value function. The set of all
τ-measurable hyponormal operators is closed in the topology of τ -local convergence in measure. This assertion is a generalization of Problem 226 from the book "Halmos P.R., A Hilbert Space Problem Book, Second edition, Springer, New York (1982)" to the setting of unbounded operators. The set of all τ-measurable cohyponormal operators is closed in the topology of τ -local convergence in measure if and only if the von Neumann algebra M is finite. |
|
dc.language.iso |
en |
|
dc.relation.ispartofseries |
SIBERIAN MATHEMATICAL JOURNAL |
|
dc.rights |
открытый доступ |
|
dc.subject |
Hilbert space |
|
dc.subject |
von Neumann algebra |
|
dc.subject |
normal trace |
|
dc.subject |
measurable operator |
|
dc.subject |
hyponormal operator
1 |
|
dc.subject.other |
Математика |
|
dc.title |
Hyponormal mesurable operators affiliated to a semifinite von Neumann algebra |
|
dc.type |
Article |
|
dc.contributor.org |
Институт математики и механики им. Н.И. Лобачевского |
|
dc.description.pages |
656-663 |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
66 |
|
dc.pub-id |
314207 |
|
dc.identifier.doi |
10.1134/S0037446625030061 |
|