Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | |
dc.contributor.author | Khadur Makhmud - | |
dc.date.accessioned | 2024-07-03T05:00:23Z | |
dc.date.available | 2024-07-03T05:00:23Z | |
dc.date.issued | 2024 | |
dc.identifier.citation | Bikchentaev A.M., Khadour M., Differences of idempotents in C*-algebras and the quantum Hall effect. II. Unbounded idempotents / A.M. Bikchentaev, M. Khadour // Lobachevskii Journal of Mathematics. - 2024. - Vol. 45, No. 4. - P. 1825-1832.. | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/184030 | |
dc.description.abstract | Let a von Neumann algebra M of operators act on a Hilbert space H, I be the unit of M, τ be a faithful semifinite normal trace on M. Let (M, τ) be the ∗-algebra of all τ-measurable operators and L1(M, τ) be the Banach space of all τ-integrable operators, P, Q ∈ S(M, τ) be idempotents. If P - Q ∈ L1(M, τ) then τ(P - Q) ∈ R. In particular, if A = A3 ∈ L1(M, τ), then τ(A) ∈ R. If P - Q ∈ L1(M, τ) and P Q ∈ M, then for all n ∈ N we have (P - Q)2n+1 ∈ L1(M, τ) and τ((P - Q)2n+1) = τ(P - Q) ∈ R. If A ∈ L2(M, τ) and U ∈ M is an isometry, then ||UA - A||22 ≤ 2||(I - U)AA∗||1. | |
dc.language.iso | en | |
dc.relation.ispartofseries | Lobachevskii Journal of Mathematics | |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | von Neumann algebra | |
dc.subject | normal trace | |
dc.subject | measurable operator | |
dc.subject | idempotent | |
dc.subject | tripotent | |
dc.subject | quantum Hall effect | |
dc.subject.other | Математика | |
dc.title | Differences of idempotents in C*-algebras and the quantum Hall effect. II. Unbounded idempotents | |
dc.type | Article | |
dc.contributor.org | Институт математики и механики им. Н.И. Лобачевского | |
dc.description.pages | 1825-1832 | |
dc.relation.ispartofseries-issue | 4 | |
dc.relation.ispartofseries-volume | 45 | |
dc.pub-id | 302205 |