dc.contributor |
Казанский федеральный университет |
|
dc.contributor.author |
Bikchentaev Airat Midkhatovich |
|
dc.contributor.author |
Khadur Makhmud - |
|
dc.date.accessioned |
2024-07-03T05:00:23Z |
|
dc.date.available |
2024-07-03T05:00:23Z |
|
dc.date.issued |
2024 |
|
dc.identifier.citation |
Bikchentaev A.M., Khadour M., Differences of idempotents in C*-algebras and the quantum Hall effect. II. Unbounded idempotents / A.M. Bikchentaev, M. Khadour // Lobachevskii Journal of Mathematics. - 2024. - Vol. 45, No. 4. - P. 1825-1832.. |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/184030 |
|
dc.description.abstract |
Let a von Neumann algebra M of operators act on a Hilbert space H, I be the unit of M, τ be a faithful semifinite normal trace on M. Let (M, τ) be the ∗-algebra of all τ-measurable operators and L1(M, τ) be the Banach space of all τ-integrable operators, P, Q ∈ S(M, τ) be idempotents. If P - Q ∈ L1(M, τ) then τ(P - Q) ∈ R. In particular, if A = A3 ∈ L1(M, τ), then τ(A) ∈ R. If P - Q ∈ L1(M, τ) and P Q ∈ M, then for all n ∈ N we have (P - Q)2n+1 ∈ L1(M, τ) and τ((P - Q)2n+1) = τ(P - Q) ∈ R. If A ∈ L2(M, τ) and U ∈ M is an isometry, then
||UA - A||22 ≤ 2||(I - U)AA∗||1. |
|
dc.language.iso |
en |
|
dc.relation.ispartofseries |
Lobachevskii Journal of Mathematics |
|
dc.rights |
открытый доступ |
|
dc.subject |
Hilbert space |
|
dc.subject |
von Neumann algebra |
|
dc.subject |
normal trace |
|
dc.subject |
measurable operator |
|
dc.subject |
idempotent |
|
dc.subject |
tripotent |
|
dc.subject |
quantum Hall effect |
|
dc.subject.other |
Математика |
|
dc.title |
Differences of idempotents in C*-algebras and the quantum Hall effect. II. Unbounded idempotents |
|
dc.type |
Article |
|
dc.contributor.org |
Институт математики и механики им. Н.И. Лобачевского |
|
dc.description.pages |
1825-1832 |
|
dc.relation.ispartofseries-issue |
4 |
|
dc.relation.ispartofseries-volume |
45 |
|
dc.pub-id |
302205 |
|