Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Akhmadiev Marat Gabdelbyarovich | |
dc.contributor.author | Alhasan Khasan | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | |
dc.contributor.author | Ivanshin Petr Nikolaevich | |
dc.date.accessioned | 2023-07-07T12:54:38Z | |
dc.date.available | 2023-07-07T12:54:38Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | M. Akhmadiev. Commutators and hyponormal operators on a Hilbert space / M. Akhmadiev, H. Alhasan, A. Bikchentaev, P. Ivanshin // J. Iran. Math. Soc. 2023. Vol. 4. № 1. P 67--78. | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/176401 | |
dc.description.abstract | Let H be an innite-dimensional Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators on H. An operator A ∈ B(H) is a commutator, if A = [S, T ] = ST - T S for some S, T ∈ B(H). Let X, Y ∈ B(H) and X ≥ 0. If the operator XY is a non-commutator, then X^pY X^{1-p} is a non-commutator for every 0 ( p ( 1. Let A ∈ B(H) be p-hyponormal for some 0 ( p ≤ 1. If |A^∗|^r is a non-commutator for some r ) 0, then |A|^q is a non-commutator for every q ) 0. Let H be separable and A ∈ B(H) be a non-commutator. If A is hyponormal (or cohyponormal), then A is normal. We also present results in the case of a finite-dimensional Hilbert space. | |
dc.language.iso | en | |
dc.relation.ispartofseries | Journal of the Iranian Mathematical Society | |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | linear operator | |
dc.subject | commutator | |
dc.subject | hyponormal operator | |
dc.subject | trace | |
dc.subject.other | Математика | |
dc.title | Commutators and hyponormal operators on a Hilbert space | |
dc.type | Article | |
dc.contributor.org | Институт математики и механики им. Н.И. Лобачевского | |
dc.description.pages | 67-78 | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 4 | |
dc.pub-id | 283141 |