dc.contributor |
Казанский федеральный университет |
|
dc.contributor.author |
Akhmadiev Marat Gabdelbyarovich |
|
dc.contributor.author |
Alhasan Khasan |
|
dc.contributor.author |
Bikchentaev Airat Midkhatovich |
|
dc.contributor.author |
Ivanshin Petr Nikolaevich |
|
dc.date.accessioned |
2023-07-07T12:54:38Z |
|
dc.date.available |
2023-07-07T12:54:38Z |
|
dc.date.issued |
2023 |
|
dc.identifier.citation |
M. Akhmadiev. Commutators and hyponormal operators on a Hilbert space / M. Akhmadiev, H. Alhasan, A. Bikchentaev, P. Ivanshin //
J. Iran. Math. Soc. 2023. Vol. 4. № 1. P 67--78. |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/176401 |
|
dc.description.abstract |
Let H be an innite-dimensional Hilbert space over the field C, B(H) be the ∗-algebra of all linear bounded operators on H. An operator A ∈ B(H) is a commutator, if A = [S, T ] = ST - T S for some S, T ∈ B(H). Let X, Y ∈ B(H) and X ≥ 0. If the
operator XY is a non-commutator, then X^pY X^{1-p} is a non-commutator for every 0 ( p ( 1. Let A ∈ B(H) be p-hyponormal for some 0 ( p ≤ 1. If |A^∗|^r is a non-commutator for some r ) 0, then |A|^q is a non-commutator for every q ) 0. Let H be separable and A ∈ B(H) be a non-commutator. If A is hyponormal (or cohyponormal), then A is normal. We also present results in the case of a finite-dimensional Hilbert space. |
|
dc.language.iso |
en |
|
dc.relation.ispartofseries |
Journal of the Iranian Mathematical Society |
|
dc.rights |
открытый доступ |
|
dc.subject |
Hilbert space |
|
dc.subject |
linear operator |
|
dc.subject |
commutator |
|
dc.subject |
hyponormal operator |
|
dc.subject |
trace |
|
dc.subject.other |
Математика |
|
dc.title |
Commutators and hyponormal operators on a Hilbert space |
|
dc.type |
Article |
|
dc.contributor.org |
Институт математики и механики им. Н.И. Лобачевского |
|
dc.description.pages |
67-78 |
|
dc.relation.ispartofseries-issue |
1 |
|
dc.relation.ispartofseries-volume |
4 |
|
dc.pub-id |
283141 |
|