Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | |
dc.date.accessioned | 2023-03-06T06:22:06Z | |
dc.date.available | 2023-03-06T06:22:06Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Bikchentaev A. Commutators in $C*$-algebras and traces / Airat Bikchentaev // Annals of Functional Analysis - 2023. Vol. 14. Article number 42. P. 1-14. | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/175256 | |
dc.description.abstract | Let $\mathcal{H}$ be a Hilbert space, $\dim \mathcal{H}= +\infty$. Let $X=U|X|$ be the polar decomposition of an operator $X\in \mathcal{B}(\mathcal{H})$. Then $X$ is a non-commutator if and only if both $U$ and $|X|$ are non-commutators. A Hermitian operator $X\in \mathcal{B}(\mathcal{H})$ is a commutator if and only if the Cayley transform $\mathcal{K}(X)$ is a commutator. Let $\mathcal{H}$ be a Hilbert space and $\dim mathcal{H}\leq +\infty$, $A,B, P\in \mathcal{B}(\mathcal{H})$ and $P=P^2$. If $AB=\lambda BA$ for some $\lambda \in \mathbb{C}\setminus\{1\}$ then the operator $AB$ is a commutator. The operator $AP$ is a commutator if and only if $PA$ is a commutator. | |
dc.language.iso | en | |
dc.relation.ispartofseries | Annals of Functional Analysis | |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | linear operator | |
dc.subject | commutator | |
dc.subject | $C^*$-algebra | |
dc.subject | trace | |
dc.subject.other | Математика | |
dc.title | Commutators in $C*$-algebras and traces | |
dc.type | Article | |
dc.contributor.org | Институт математики и механики им. Н.И. Лобачевского | |
dc.description.pages | 1-14 | |
dc.relation.ispartofseries-issue | 3 | |
dc.relation.ispartofseries-volume | 14 | |
dc.pub-id | 277243 | |
dc.identifier.doi | 10.1007/s43034-023-00260-6 |