dc.contributor |
Казанский федеральный университет |
|
dc.contributor.author |
Bikchentaev Airat Midkhatovich |
|
dc.date.accessioned |
2023-03-06T06:22:06Z |
|
dc.date.available |
2023-03-06T06:22:06Z |
|
dc.date.issued |
2023 |
|
dc.identifier.citation |
Bikchentaev A. Commutators in $C*$-algebras and traces / Airat Bikchentaev // Annals of Functional Analysis - 2023. Vol. 14. Article number 42. P. 1-14. |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/175256 |
|
dc.description.abstract |
Let $\mathcal{H}$ be a Hilbert space, $\dim \mathcal{H}= +\infty$. Let $X=U|X|$ be the polar decomposition of an
operator $X\in \mathcal{B}(\mathcal{H})$. Then $X$ is a non-commutator if and only if both $U$ and $|X|$ are non-commutators. A Hermitian operator $X\in \mathcal{B}(\mathcal{H})$ is a commutator if and only if the Cayley transform $\mathcal{K}(X)$ is a commutator.
Let $\mathcal{H}$ be a Hilbert space and $\dim mathcal{H}\leq +\infty$, $A,B, P\in \mathcal{B}(\mathcal{H})$ and $P=P^2$.
If $AB=\lambda BA$ for some $\lambda \in \mathbb{C}\setminus\{1\}$ then the operator $AB$ is a commutator.
The operator $AP$ is a commutator if and only if $PA$ is a commutator. |
|
dc.language.iso |
en |
|
dc.relation.ispartofseries |
Annals of Functional Analysis |
|
dc.rights |
открытый доступ |
|
dc.subject |
Hilbert space |
|
dc.subject |
linear operator |
|
dc.subject |
commutator |
|
dc.subject |
$C^*$-algebra |
|
dc.subject |
trace |
|
dc.subject.other |
Математика |
|
dc.title |
Commutators in $C*$-algebras and traces |
|
dc.type |
Article |
|
dc.contributor.org |
Институт математики и механики им. Н.И. Лобачевского |
|
dc.description.pages |
1-14 |
|
dc.relation.ispartofseries-issue |
3 |
|
dc.relation.ispartofseries-volume |
14 |
|
dc.pub-id |
277243 |
|
dc.identifier.doi |
10.1007/s43034-023-00260-6 |
|