Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | en |
dc.date.accessioned | 2023-02-22T06:38:17Z | |
dc.date.available | 2023-02-22T06:38:17Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Bikchentaev A.M. The algebra of thin measurable operators is directly finite/ A.M. Bikchentaev // Constructive Mathematical Analysis. - 2023. - V. 6, no 1. - P. 1-5. | en |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/175023 | |
dc.description.abstract | Let $\mathcal{M}$ be a semifinite von Neumann algebra on a Hilbert space $\cH$ equipped with a faithful normal semifinite trace $\tau$, $S(\mathcal{M},\tau)$ be the ${}^*$-algebra of all $\tau$-measurable operators. Let $S_0(\mathcal{M},\tau)$ be the ${}^*$-algebra of all $\tau$-compact operators and $T(\mathcal{M},\tau)=S_0(\mathcal{M},\tau)+\mathbb{C}I$ be the ${}^*$-algebra of all operators $X=A+\lambda I$ with $A\in S_0(\mathcal{M},\tau)$ and $\lambda \in \mathbb{C}$. We prove that every operator of $T(\mathcal{M},\tau)$ that is left-invertible in $T(\mathcal{M},\tau)$ is in fact invertible in $T(\mathcal{M},\tau)$. It is a generalization of Sterling Berberian theorem (1982) on the subalgebra of thin operators in $\cB (\cH)$. For the singular value function $\mu(t; Q)$ of $Q=Q^2\in S(\mathcal{M},\tau)$ we have $\mu(t; Q)\in \{0\}\bigcup [1, +\infty)$ for all $t)0$. It gives the positive answer to the question posed by Daniyar Mushtari in 2010. | en |
dc.language.iso | en | |
dc.relation.ispartofseries | Constructive Mathematical Analysis | en |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | von Neumann algebra | |
dc.subject | semifinite trace | |
dc.subject | $\tau$-measurable operator | |
dc.subject | $\tau$-compact operator | |
dc.subject | singular value function | |
dc.subject | idempotent | |
dc.title | The algebra of thin measurable operators is directly finite | |
dc.type | Article | |
dc.contributor.org | Институт математики и механики им. Н.И. Лобачевского | |
dc.description.pages | 1-5 | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 6 | |
dc.pub-id | 276828 | |
dc.identifier.doi | 10.33205/cma.1181495 |