Электронный архив

The algebra of thin measurable operators is directly finite

Показать сокращенную информацию

dc.contributor Казанский федеральный университет
dc.contributor.author Bikchentaev Airat Midkhatovich en
dc.date.accessioned 2023-02-22T06:38:17Z
dc.date.available 2023-02-22T06:38:17Z
dc.date.issued 2023
dc.identifier.citation Bikchentaev A.M. The algebra of thin measurable operators is directly finite/ A.M. Bikchentaev // Constructive Mathematical Analysis. - 2023. - V. 6, no 1. - P. 1-5. en
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/175023
dc.description.abstract Let $\mathcal{M}$ be a semifinite von Neumann algebra on a Hilbert space $\cH$ equipped with a faithful normal semifinite trace $\tau$, $S(\mathcal{M},\tau)$ be the ${}^*$-algebra of all $\tau$-measurable operators. Let $S_0(\mathcal{M},\tau)$ be the ${}^*$-algebra of all $\tau$-compact operators and $T(\mathcal{M},\tau)=S_0(\mathcal{M},\tau)+\mathbb{C}I$ be the ${}^*$-algebra of all operators $X=A+\lambda I$ with $A\in S_0(\mathcal{M},\tau)$ and $\lambda \in \mathbb{C}$. We prove that every operator of $T(\mathcal{M},\tau)$ that is left-invertible in $T(\mathcal{M},\tau)$ is in fact invertible in $T(\mathcal{M},\tau)$. It is a generalization of Sterling Berberian theorem (1982) on the subalgebra of thin operators in $\cB (\cH)$. For the singular value function $\mu(t; Q)$ of $Q=Q^2\in S(\mathcal{M},\tau)$ we have $\mu(t; Q)\in \{0\}\bigcup [1, +\infty)$ for all $t)0$. It gives the positive answer to the question posed by Daniyar Mushtari in 2010. en
dc.language.iso en
dc.relation.ispartofseries Constructive Mathematical Analysis en
dc.rights открытый доступ
dc.subject Hilbert space
dc.subject von Neumann algebra
dc.subject semifinite trace
dc.subject $\tau$-measurable operator
dc.subject $\tau$-compact operator
dc.subject singular value function
dc.subject idempotent
dc.title The algebra of thin measurable operators is directly finite
dc.type Article
dc.contributor.org Институт математики и механики им. Н.И. Лобачевского
dc.description.pages 1-5
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 6
dc.pub-id 276828
dc.identifier.doi 10.33205/cma.1181495


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика