Показать сокращенную информацию
dc.contributor | Казанский федеральный университет | |
dc.contributor.author | Bikchentaev Airat Midkhatovich | |
dc.date.accessioned | 2023-01-19T07:49:29Z | |
dc.date.available | 2023-01-19T07:49:29Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Bikchentaev A.M. The topologies of local convergence in measure on the algebra of measurable operators / A.M. Bikchentaev // Siberian Math. J. - 2023. - V. 64. - No 1. - P. 13--21. | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/173594 | |
dc.description.abstract | Given a von Neumann algebra $M$ of operators on a Hilbert space $H$ and a faithful normal semifinite trace $\tau$ on $M$, denote by $S(M, \tau)$ the *-algebra of $\tau$-measurable operators. We obtain a sufficient condition for the positivity of an hermitian operator in $S(M, \tau)$ in terms of the topology $t_{\tau l}$ of $\tau$-local convergence in measure. We prove that the *-ideal $F(M, \tau)$ of elementary operators is $t_{\tau l}$-dense in $S(M, \tau)$. If $t_{\tau}$ is locally convex then so is $t_{\tau l}$; if $t_{\tau l}$ is locally convex then so is the topology $t_{w \tau l}$ of weakly $\tau$-local convergence in measure. We propose some method for constructing F-normed ideal spaces, henceforth F-NIPs, on $(M, \tau)$ starting from a prescribed F-NIP and preserving completeness, local convexity, local boundedness, or normability whenever present in the original. Given two F-NIPs $X$ and $Y$ on $(M, \tau)$, suppose that $AX\subseteq Y$ for some operator $A \in S(M, \tau)$. Then the multiplier $M_AX = AX$ acting as $M_A : X \to Y$ is continuous. In particular, for $X\subseteq Y$ the natural embedding of $X$ into $Y$ is continuous. We inspect the properties of decreasing sequences of F-NIPs on $(M, \tau)$. | |
dc.language.iso | en | |
dc.relation.ispartofseries | SIBERIAN MATHEMATICAL JOURNAL | |
dc.rights | открытый доступ | |
dc.subject | Hilbert space | |
dc.subject | linear operator | |
dc.subject | von Neumann algebra | |
dc.subject | normal trace | |
dc.subject | measurable operator | |
dc.subject | local convergence in measure | |
dc.subject | locally convex space | |
dc.subject.other | Математика | |
dc.title | The topologies of local convergence in measure on the algebra of measurable operators | |
dc.type | Article | |
dc.contributor.org | Институт математики и механики им. Н.И. Лобачевского | |
dc.description.pages | 13-21 | |
dc.relation.ispartofseries-issue | 1 | |
dc.relation.ispartofseries-volume | 64 | |
dc.pub-id | 275499 |