Аннотации:
Abstract: This paper presents a systematical study of the effect of porosity, pore-level heterogeneity and anisotropy on the absolute permeability of digital images of porous media. The main goal is to develop an analytical formula that estimates permeability as a function of these three parameters at once. Permeability is assessed based on numerical simulations using the lattice Boltzmann equations. Digital models of porous media are generated by a combined method consisting of Monte-Carlo and quartet structure generation set (QSGS) algorithms. Increase in heterogeneity negatively affects permeability. With an increase in porosity, the effect of heterogeneity on flow properties decreases. There was a linear decrease in permeability during the transition between favorable and unfavorable anisotropy. The influence of anisotropy is most pronounced in samples with high porosity and monotonically reduces with decreasing porosity. Heterogeneity negatively influences on the sensitivity of flow properties to changes in anisotropy and independent on porosity.