Abstract:
For space-born astronomical X-ray telescopes, iridium-based reflective layer systems are known as highly effective mirrors coatings. During the recent years, Aschaffenburg University of Applied Sciences and the Czech Technical University in Prague jointly developed stress compensated chromium-iridium coatings for this application. To overcome the disturbing re ectivity reduction of the iridium absorption edge around 2 keV photon energy, thin overcoat layers of chromium were applied in addition. Now a prototype of a wide-field, imaging X-ray telescope of Lobster Eye type is assembled at the company RIGAKU. For this purpose a small series of 34 mirrors based on 100 x 50 mm semiconductor grade silicon substrates has been coated at Aschaffenburg University. The applied tri-layer system consists of a stack of 40 nm chromium, which act as adhesive layer and compensates layer stress, a 30 nm iridium thick reflective layer, and an additional overcoat layer of 6 nm chromium. This layer system have been analysed by AFM and TEM images. The mirrors are assembled into an aluminium frame to build a 2D Lobster Eye type telescope. The designed focal length of this wide field X-ray telescope is two meter. To study the performance of the tri-layer coating system, a twin LE telescope with convenient gold coatings was manufactured also. Performance measurements of both telescopes and under same conditions are planned at the PANTER test facility at the Max-Planck Institute for Extraterrestrial Physics. First experimental results, their comparison with theoretical simulations and the comparison between both models will be presented in this contribution.