Abstract:
© 2020, Allerton Press, Inc. We consider a class of anisotropic elliptic equations of second order with variable exponents of non-linearity where a special Radon measure is used as the right-hand side. We establish uniqueness of entropy and renormalized solutions of the Dirichlet problem in anisotropic Sobolev spaces with variable exponents of non-linearity for arbitrary domains and certain other their properties. In addition, we prove the equivalence of entropy and renormalized solutions of the problem under consideration.