Аннотации:
© The Authors, published by EDP Sciences. One of the quickly developing trends in the optimization of electric power grids is system development of operation and optimization of branch circuits which are based on linear programming problems. One of its categories is traffic problem. The paper discusses the formulation of various types of transport optimization problems used in the design of the most efficient power supply systems in the real sector of economy. The construction of arithmetic models of problems is carried out. Their optimality criterion is cost minimization for the design of electrical network diagrams consisting of power lines connecting sources and consumers. Examples of designing optimization power layout in mathematical problems considering the transmission capacity of power lines is given. The paper also touches upon a mathematical problem considering possible transit of capacities. The task is to build a mathematical model and solve problems that ensure minimization of process losses and losses of power when designing electrical networks. The results of solving problems are presented in the form of power supply circuits corresponding to the most optimal linking of source and consumer nodes. The work is of a scientific and practical significance as it considers the problem of optimizing economic costs when designing electric power network schemes. Moreover it is based on a qualitatively different level of use of the traffic problem algorithm. The algorithm for solving the minimization problem obtained in this paper allows developing the necessary computing operations as well as quickly obtaining the results of solving the cost optimization problem in the designed electric power network.