Аннотации:
© Published under licence by IOP Publishing Ltd. Increasing steam-thermal methods efficiency for heavy using various catalysts is generating considerable interest in scientific research all over the world. Thus, it is worth to optimize catalyst effectiveness during their in-situ formation from oil soluble precursors using different transition metals. In this paper, a physical simulation of heavy oil catalytic aquathermolysis from the Ashalchinskoye field was carried out. The process was carried out in the presence of a hydrogen donor and a mixture of oil-soluble iron and cobalt metal tallate (1:1 weight ratio) at temperatures 250°C and different exposure time (6 and 24 h). It was found that the most effective conditions for the thermal conversion of the oil under study are a temperature of 250°C at 24 hours. In this case, a significant decrease in the proportion of high molecular weight components, mainly resins (by 39 %) and viscosity (about 45 %) occurs due to the course of destructive processes. At the same time, GCMS analysis of the aromatic oil fraction showed that an increase in time promotes the redistribution of mono- A nd polyaromatic structures.