Abstract:
© 2019 Elsevier B.V. Spinal cord injury (SCI) results in pronounced focal tissue damage with subsequent formation of a glial scar that blocks axon regeneration and regrowth. Cellular changes and the composition of the extracellular matrix in regions distal from the injured area remain poorly characterized. In the present study, in the spinal cord distal to the damaged area (perilesion perimeter) there were minimal gross histological changes, but there were pronounced alterations in the extracellular proteoglycans even at 30 days after SCI. These abnormalities coincided with the appearance of reactive astrocytes and a reduction in main astrocytic glutamate transporter 1. Proteoglycan levels exhibited different kinetics and changes after SCI in areas near neuronal cell bodies and in areas distal from them. The results of the study suggest that SCI induces widespread changes in the spinal cord that may be responsible for neuronal dysfunction far from the damaged area and further aggravation of the SCI.