Abstract:
© Springer Nature Switzerland AG 2019. Humanoid robots are created to facilitate many facets of daily life, both in scenarios when humans and robots collaborate and when robot completely replaces human. One of such more important cases is the household assistance for older people. When a robot operates in home environments the needs to interact with various household objects, of different shape and size. A humanoid end-effector is typically modeled to have from two to five configuration of fingers designed specifically for grasping. By making fingers flexible and using dexterous arm one could operate objects in many different configurations. If one chooses to provide a finger control by actuating each of the finger’s phalanxes by using separate motor, humanoid hand becomes costly and overall size of the hand will significantly increase to accommodate necessary hardware and wiring. To address this issue, many engineers prefer to employ mimic joints to reduce a cost and size, while keeping acceptable levels of finger’s dexterity. This paper presents a study on household objects pick and place task being implemented for AR-601M humanoid robot that is using mimic joints in his fingers. Experiments were conducted in a Gazebo simulation with 5 model objects, which were created to be representations of real typical household items.