Abstract:
© Springer International Publishing AG 2018. While interacting in a human environment, a fall is the main threat to safety and successful operation of humanoid robots, and thus it is critical to explore ways to detect and manage an unavoidable fall of humanoid robots. Even assuming perfect bipedal walking strategies and algorithms, there exist several unexpected factors, which can threaten existing balance of a humanoid robot. These include such issues as power failure, robot component failures, communication disruptions and failures, sudden forces applied to the robot externally as well as internally generated exceed torques etc. As progress in a humanoid robotics continues, robots attain more autonomy and enter realistic human environments, they will inevitably encounter such factors more frequently. Undesirable fall might cause serious physical damage to a human user, to a robot and to surrounding environment. In this paper, we present a brief review of strategies that include algorithms for fall prediction, avoidance, and damage control of small-size and human-size humanoids, which will be further implemented for Russian humanoid robot AR-601.