Kazan Federal University Digital Repository

End-to-end deep framework for disease named entity recognition using social media data

Show simple item record

dc.date.accessioned 2019-01-22T20:53:26Z
dc.date.available 2019-01-22T20:53:26Z
dc.date.issued 2018
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/149282
dc.description.abstract © 2017 IEEE. A growing interest in the natural language processing methods applied to healthcare applications has been observed in the recent years. In particular, new drug pharmacological properties can be derived patient observations shared in social media forums. Developing approaches designed to automatically retrieve this information is of no low interest for personalized medicine and wide-scale drug tests. The full potential of the effective exploitation of both textual data and published biological data for drug research often goes untapped mostly because of the lack of tools and focused methodologies to curate and integrate the data and transform it into new, experimentally testable hypotheses. Deep learning architectures have shown promising results for a wide range of tasks. In this work, we propose to address a challenging problem by applying modern deep neural networks for disease named entity recognition. An essential step for this task is recognition of disease mentions and medical concept nor-malization, which is highly difficult with simple string matching approaches. We cast the task as an end-to-end problem, solved using two architectures based on recurrent neural networks and pre-trained word embeddings. We show that it is possible to assess the practicability of using social media data to extract representative medical concepts for pharmacovigilance or drug repurposing.
dc.subject deep learning
dc.subject disease named entity extraction
dc.subject disease named entity normalization
dc.subject healthcare
dc.subject Medical systems
dc.subject recurrent neural networks
dc.title End-to-end deep framework for disease named entity recognition using social media data
dc.type Conference Paper
dc.relation.ispartofseries-volume 2018-January
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 47
dc.source.id SCOPUS-2018-2018-SID85047745771


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics