Abstract:
© 2018, Pleiades Publishing, Ltd. Thymol is oxidized at glassy carbon electrodes (GCEs) modified with coimmobilized carboxylated multiwalled carbon nanotubes (MWCNT-COOH) and surfactants of various nature in a Britton–Robinson buffer solution. The effect of the nature and concentration of surfactants in the composition of the electrode surface modifier on the amperometric response of thymol was evaluated. It was found that the best voltammetric characteristics are achieved in the case of an anionic 0.10 mM sodium dodecyl sulfate (SDS) (a decrease in oxidation potential by 50 mV and an increase in oxidation currents 2.2-fold in comparison with MWCNT-COOH/GCE). The electrooxidation of thymol at MWCNT-COOH–SDS/GCE proceeds irreversibly with the participation of one electron and one proton and is controlled by the adsorption of the analyte. The electrode response is linear in the ranges 0.500–17.0 and 17.0–150 μM of thymol with the limits of detection 0.14 μM and determination 0.48 μM. The developed method is tested on thymol-containing pharmaceutical preparations. The voltammetry data are compared with the results of an independent spectrophotometric determination.