Аннотации:
© 2015 Elsevier B.V. As significant indicators of deep-time palaeoclimate, a number of new palaeontological, pedological and geochemical characteristics are provided for the Chemnitz Fossil Lagerstätte to depict more precisely its environmental conditions. For the first time, several lines of evidence indicate that this fossil forest, instantaneously preserved by volcanic deposits, once received an annual precipitation of around 800-1100 mm, but grew on a nearly unweathered palaeosol. Although the composition of this rich and diverse T0 assemblage suggests a hygrophilous, dense and multi-aged vegetation dominated by conservative lineages, the habitat was affected by environmental disturbances and pronounced seasonality. Repeated changes in local moisture availability are suggested by geochemical proxies, the co-occurrence to intergrowth of calcic and ferric glaebules in the palaeosol and developmental traits of perennial vegetational elements. Specific substrate adaptation is reflected by different root systems and cyclic growth interruptions recorded in the stems, branches and roots of long-lived woody plants. Many differentially adapted terrestrial animals complete the more comprehensive reconstruction of a late Sakmarian ecosystem and its climatic and preservational controls. Albeit spatially confined, this diverse in-situ record may contribute to understand wetland-dryland dynamics of sub-tropical Northern Hemisphere Pangaea.