Abstract:
© 2016 Elsevier LtdThe influence of the fineness, concentration, and chemico-mineralogical composition of limestone on the workability, reaction kinetics, compressive strength, microstructure, and binder gel characteristics of sodium carbonate–based waste-activated waste slag cement pastes was investigated in this work. Alkali-activated slag cements incorporated with limestone, containing 33–100% of calcite, at a content of up to 60% with a 28-day compressive strength of 26.2–48.8 MPa were proposed. The main reaction products of hardened alkali-activated cement pastes and those incorporated with limestone are [Formula presented], CaCO3, Na2Ca(CO3)2·5H2O, and Na2CaSiO4. “Physically active” limestone does not chemically react with the binder gel but it can improve the physical structure. The higher packing density of mixed cement, without an increase in the water demand, the satisfactory binding strength of limestone with the binder gel lead to the improvement in the physical structure and compressive strength of alkali-activated slag paste.