Аннотации:
Finite-sheeted covering mappings onto compact connected groups are studied. We show that for a covering mapping from a connected Hausdorff topological space onto a compact (in general, non-abelian) group there exists a topological group structure on the covering space such that the mapping becomes a homomorphism of groups. To prove this fact we construct an inverse system of covering mappings onto Lie groups which approximates the given covering mapping. As an application, it is shown that a covering mapping onto a compact connected abelian group G must be a homeomorphism provided that the character group of G admits division by degree of the mapping. We also get a criterion for triviality of coverings in terms of means and prove that each finite covering of G is equivalent to a polynomial covering. © 2006 Elsevier B.V. All rights reserved.