Abstract:
Polymer dynamics in the melt state cover a wide range in time and frequency, for both molecular weights below and above the entanglement length. Nuclear Magnetic Resonance (NMR) offers a number of techniques that cover a broad section of this frequency range, with frequency dependent (i.e., magnetic field dependent) relaxometry providing the widest window. Combining fast field cycling techniques with frequency-temperature superposition has recently improved the understanding of polymer melt dynamics from the local to global range. At the same time, a detailed theoretical approach that separates intra- and intermolecular contributions to relaxation times has been developed. These methods are shown to improve the description of segmental dynamics in polymers, being related to time-dependent diffusion coefficients, and to distinguish between these two different relaxation contributions for a number of model compounds. The findings represent the foundation for a more thorough understanding of polymers under external restrictions and bear potential to provide a conceptually new access to biopolymer dynamics and interactions. © 2013 Elsevier Ltd.