Аннотации:
In this work we prove that for every pair of computably enumerable degrees a<Q b there exists a properly 2-computably enumerable degree d such that a <Q d <Q b, a isolates d from below, and b isolates d from above. Two corollaries follow from this result. First, there exists a 2-computably enumerable degree which is Q-incomparable with any nontrivial (different from 0 and 0′) computably enumerable degree. Second, every nontrivial computably enumerable degree isolates some 2-computably enumerable degree from below and some 2-computably enumerable degree from above. © 2010 Allerton Press, Inc.