Аннотации:
The processes of sample fractionation by two-step atomization with the intermediate condensation of the analyte on a cold surface in graphite furnaces were theoretically studied. The transfer equation was solved for the atoms, molecules, and condensed particles of the sample from a flow of argon directed along this surface. The spatial distributions of vapor and the condensate formed were calculated depending on the composition and flow rate. It was found that a cold surface section with a length of 6 mm is sufficient for the complete trapping of atomic analyte vapor from an argon layer having a velocity of about 1 m/sec and a thickness of 5 mm. In this case, the molecules and clusters condensation coefficients smaller than unity were deposited insignificantly; that is, they were fractionally separated. The results of the shadow spectral visualization of the process of sample fractionation on a cold probe surface of in commercial HGA and THGA atomizers were interpreted. The advantages of analytical signals upon the evaporation of a sample condensate from the probe in these atomizers and inductively coupled plasma were demonstrated. © 2012 Pleiades Publishing, Inc.