Аннотации:
We introduce a candidate for the group algebra of a Hausdorff group which plays the same role as the group algebra of a finite group. It allows to define a natural bijection between k-continuous representations of the group in a Hilbert space and continuous representations of the group algebra. Such bijections are known, but to our knowledge only for locally compact groups. We can establish such a bijection for more general groups, namely Hausdorff groups, because we replace integration techniques by functorial methods, i.e., by using a duality functor which lives in certain categories of topological Banach balls (resp., unit balls of Saks spaces). © 1995 Kluwer Academic Publishers.