Аннотации:
A method for Monte Carlo simulation of 2D spin-polarized electron transport in III-V semiconductor heterojunction (FETs) is presented. In the simulation, the dynamics of the electrons in coordinate and momentum space is treated semiclassically. The density matrix description of the spin is incorporated in the Monte Carlo method to account for the spin polarization dynamics. The spin-orbit interaction in the spin FET leads to both coherent evolution and dephasing of the electron spin polarization. Spin-independent scattering mechanisms, including optical phonons, acoustic phonons and ionized impurities, are implemented in the simulation. The electric field is determined self-consistently from the charge distribution resulting from the electron motion. Description of the Monte Carlo scheme is given and simulation results are reported for temperatures in the range 77-300K. © 2004 IMACS. Published by Elsevier B.V. All rights reserved.