Abstract:
We consider a general class of equilibrium problems which involve a single-valued mapping and a nonsmooth bifunction. Such mixed equilibrium problems are solved with a combined relaxation method using an auxiliary iteration of a splitting-type method for constructing a separating hyperplane. We prove the convergence of the method under the assumption that the dual of the mixed equilibrium problem is solvable. Convergence rates are also derived. © 2005 Springer Science+Business Media, Inc.