Аннотации:
© 2017, Pleiades Publishing, Ltd. We consider a boundary value problem for a second-order linear elliptic differential equation with constant coefficients in a domain that is the exterior of an ellipse. The boundary conditions of the problem contain the values of the function itself and its normal derivative. We give a constructive solution of the problem and find the number of solvability conditions for the inhomogeneous problem as well as the number of linearly independent solutions of the homogeneous problem. We prove the boundary uniqueness theorem for the solutions of this equation.