Показать сокращенную информацию

dc.contributor Казанский федеральный университет ru_RU
dc.contributor.author Ninul, Anatoly Sergeevich
dc.date.accessioned 2025-04-17T07:39:08Z
dc.date.available 2025-04-17T07:39:08Z
dc.date.issued 2025
dc.identifier.citation Ninul A. S. Tensor Trigonometry. − Moscow: Publisher "Fizmatkniga", 2025, 320 p., 8 ill. Third ed., updated and added in English from original ed. Ninul A. S. Tensor Trigonometry. Theory and Applications. — Moscow: "Mir", 2004, 336 p. (ISBN 10: 5-03-003717-9). ru_RU
dc.identifier.isbn 978-5-89155-429-0
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/185169
dc.description Книга в формате pdf ru_RU
dc.description.abstract Тензорная Тригонометрия с выявлением тензорной природы бинарных углов (между линейными подпространствами) и их функций, расширенная дифференциальной тригонометрией, развита в её k-мерных формах (при k ≥ 2) для широкого применения в разнообразных областях точных знаний. В теоретическом плане, как предмет, Тензорная Тригонометрия дополняет естественным образом Аналитическую Геометрию и Линейную Алгебру. В практическом плане, она даёт новый полезный инструментарий для анализа и решений разнообразных геометрических и физических проблем в однородных и изотропных пространствах – евклидовых, квазиевклидовых (введённых в книге) и псевдоевклидовых; на их совершенных гиперповерхностях с постоянным радиус-параметром R, вложенных в них с n-мерными неевклидовыми геометриями, и также в Теории Относительности и в Квантовой Механике. Тензорная Тригонометрия даёт самым простым и наглядным способом проективные модели всех неевклидовых геометрий с простейшей формулой для угловых девиаций в них и как релятивистской прецессии Томаса, а также все генеральные законы суммирования двухступенчатых, многоступенчатых и интегральных движений, а также релятивистских скоростей любого типа – с полярным разложением на главную и индуцированную ортосферическую части. Приложения этого математического предмета развиты вплоть до дифференциальной тензорной тригонометрии регулярных кривых и мировых линий в квазиевклидовых и псевдоевклидовых пространствах, дополняя и существенно расширяя подход, изначально заложенный в классической теории евклидовых кривых Френе-Серре, с вычислением всех абсолютных и относительных дифференциально-геометрических параметров кривых, главных кинематических и динамических характеристик объекта или частицы, движущихся релятивистски в пространстве-времени Пуанкаре (комплексном) или Минковского (овеществлённом) вдоль мировой линии с 4-скоростью Пуанкаре. Согласно нашему тензорно-тригонометрическому подходу, даны ясные и наглядные формулы для всех хорошо известных и новых релятивистских эффектов с их простой физической интерпретацией, в том числе в гравитационном поле со вводом т. н. гравитационного косинуса с дополнительным ортосферическим искривлением мировой линии, в полном соответствии с Законом сохранения энергии-импульса, Законами Квантовой Механики, Теоремами Нётер и Теорией Хиггса, наконец, и впервые на Нобелевском уровне корректно обосновавшей галилеевскую инерцию материи. ru_RU
dc.language.iso en ru_RU
dc.publisher Fizmatkniga ru_RU
dc.subject tensor trigonometry ru_RU
dc.subject non-euclidean geometry ru_RU
dc.title Tensor Trigonometry ru_RU
dc.type Book ru_RU
dc.description.pages 320 ru_RU
dc.description.course Математика ru_RU


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика