Электронный архив

Scientific computing with Python: high-performance scientific computing with NumPy, SciPy, and pandas/ Claus Fuhrer, Olivier Verdier, Jan Erik Solem.

Показать сокращенную информацию

dc.contributor.author Führer Claus
dc.contributor.author Verdier Olivier
dc.contributor.author Solem Jan Erik
dc.date.accessioned 2024-01-29T22:23:24Z
dc.date.available 2024-01-29T22:23:24Z
dc.date.issued 2021
dc.identifier.citation Führer. Scientific computing with Python: high-performance scientific computing with NumPy, SciPy, and pandas: Second edition. - 1 online resource. - URL: https://libweb.kpfu.ru/ebsco/pdf/2966711.pdf
dc.identifier.isbn 9781838825102
dc.identifier.isbn 183882510X
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/180652
dc.description Includes bibliographical references and index.
dc.description.abstract Leverage this example-packed, comprehensive guide for all your Python computational needs. Book DescriptionPython has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python.This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations.By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing. This book is for students with a mathematical background, university teachers designing modern courses in programming, data scientists, researchers, developers, and anyone who wants to perform scientific computation in Python.
dc.language English
dc.language.iso en
dc.subject.other Python (Computer program language)
dc.subject.other Science -- Data processing.
dc.subject.other Engineering -- Data processing.
dc.subject.other Application software -- Development.
dc.subject.other Application software -- Development.
dc.subject.other Engineering -- Data processing.
dc.subject.other Python (Computer program language)
dc.subject.other Science -- Data processing.
dc.subject.other Electronic books.
dc.title Scientific computing with Python: high-performance scientific computing with NumPy, SciPy, and pandas/ Claus Fuhrer, Olivier Verdier, Jan Erik Solem.
dc.type Book
dc.description.pages 1 online resource.
dc.collection Электронно-библиотечные системы
dc.source.id EN05CEBSCO05C1835


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика