Электронный архив

Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data Inverse and ill-posed problems series ;, v. 63./ Michael V. Klibanov, Jingzhi Li.

Показать сокращенную информацию

dc.contributor.author Klibanov M. V. ((Michael V.),)
dc.contributor.author Li Jingzhi
dc.date.accessioned 2024-01-26T21:44:10Z
dc.date.available 2024-01-26T21:44:10Z
dc.date.issued 2021
dc.identifier.citation Klibanov M. V. Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data Inverse and ill-posed problems series ;, v. 63. - 1 online resource (XVI, 328 p.). - URL: https://libweb.kpfu.ru/ebsco/pdf/3063088.pdf
dc.identifier.isbn 3110745488
dc.identifier.isbn 9783110745481
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/178922
dc.description In English.
dc.description.abstract This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.
dc.description.tableofcontents Frontmatter -- Preface -- Acknowledgments -- Contents -- 1 Topics of this book -- 2 Carleman estimates and Hölder stability for ill-posed Cauchy problems -- 3 Global uniqueness for coefficient inverse problems and Lipschitz stability for a hyperbolic CIP -- 4 The quasi-reversibility numerical method for ill-posed Cauchy problems for linear PDEs -- 5 Convexification for ill-posed Cauchy problems for quasi-linear PDEs -- 6 A special orthonormal basis in L2(a, b) for the convexification for CIPs without the initial conditions--restricted Dirichlet-to-Neumann map -- 7 Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data -- 8 Convexification for a coefficient inverse problem for a hyperbolic equation with a single location of the point source -- 9 Convexification for an inverse parabolic problem -- 10 Experimental data and convexification for the recovery of the dielectric constants of buried targets using the Helmholtz equation -- 11 Travel time tomography with formally determined incomplete data in 3D -- 12 Numerical solution of the linearized travel time tomography problem with incomplete data -- Bibliography -- Index
dc.language English
dc.language.iso en
dc.relation.ispartofseries Inverse and Ill-Posed Problems Series. volume 63
dc.relation.ispartofseries Inverse and ill-posed problems series ;. v. 63.
dc.subject.other Inverse problems (Differential equations)
dc.subject.other Carleman theorem.
dc.subject.other Identifikationsverfahren.
dc.subject.other Inverses Problem.
dc.subject.other Numerische Mathematik.
dc.subject.other Electronic books.
dc.title Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data Inverse and ill-posed problems series ;, v. 63./ Michael V. Klibanov, Jingzhi Li.
dc.type Book
dc.description.pages 1 online resource (XVI, 328 p.).
dc.collection Электронно-библиотечные системы
dc.source.id EN05CEBSCO05C2818


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика