Электронный архив

Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning, 2nd Edition.

Показать сокращенную информацию

dc.contributor.author Bonaccorso Giuseppe.
dc.date.accessioned 2024-01-26T21:37:44Z
dc.date.available 2024-01-26T21:37:44Z
dc.date.issued 2018
dc.identifier.citation Bonaccorso. Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning, 2nd Edition.: 2nd ed. - Birmingham: Packt Publishing Ltd, 2018 - 1 online resource (514 pages) - URL: https://libweb.kpfu.ru/ebsco/pdf/1881497.pdf
dc.identifier.isbn 9781789345483
dc.identifier.isbn 1789345480
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/178497
dc.description Introducing semi-supervised Support Vector Machines (S3VM).
dc.description.abstract Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. This book will act as an entry point for anyone who wants to make a career in Machine Learning. It covers algorithms like Linear regression, Logistic Regression, SVM, Naïve Bayes, K-Means, Random Forest, and Feature engineering.
dc.description.tableofcontents Cover; Title Page; Copyright and Credits; Dedication; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: A Gentle Introduction to Machine Learning; Introduction -- classic and adaptive machines; Descriptive analysis; Predictive analysis; Only learning matters; Supervised learning; Unsupervised learning; Semi-supervised learning; Reinforcement learning; Computational neuroscience; Beyond machine learning -- deep learning and bio-inspired adaptive systems; Machine learning and big data; Summary; Chapter 2: Important Elements in Machine Learning; Data formats; Multiclass strategies.
dc.description.tableofcontents One-vs-allOne-vs-one; Learnability; Underfitting and overfitting; Error measures and cost functions; PAC learning; Introduction to statistical learning concepts; MAP learning; Maximum likelihood learning; Class balancing; Resampling with replacement; SMOTE resampling; Elements of information theory; Entropy; Cross-entropy and mutual information ; Divergence measures between two probability distributions; Summary; Chapter 3: Feature Selection and Feature Engineering; scikit-learn toy datasets; Creating training and test sets; Managing categorical data; Managing missing features.
dc.description.tableofcontents Data scaling and normalizationWhitening; Feature selection and filtering; Principal Component Analysis; Non-Negative Matrix Factorization; Sparse PCA; Kernel PCA; Independent Component Analysis; Atom extraction and dictionary learning; Visualizing high-dimensional datasets using t-SNE; Summary; Chapter 4: Regression Algorithms; Linear models for regression; A bidimensional example; Linear regression with scikit-learn and higher dimensionality; R2 score; Explained variance; Regressor analytic expression; Ridge, Lasso, and ElasticNet; Ridge; Lasso; ElasticNet; Robust regression; RANSAC.
dc.description.tableofcontents Huber regressionBayesian regression; Polynomial regression; Isotonic regression; Summary; Chapter 5: Linear Classification Algorithms; Linear classification; Logistic regression; Implementation and optimizations; Stochastic gradient descent algorithms; Passive-aggressive algorithms; Passive-aggressive regression; Finding the optimal hyperparameters through a grid search; Classification metrics; Confusion matrix; Precision; Recall; F-Beta; Cohen's Kappa; Global classification report; Learning curve; ROC curve; Summary; Chapter 6: Naive Bayes and Discriminant Analysis; Bayes' theorem.
dc.language English
dc.language.iso en
dc.publisher Birmingham Packt Publishing Ltd
dc.subject.other Computers -- Intelligence (AI) & Semantics.
dc.subject.other Computers -- Data Modeling & Design.
dc.subject.other Database design & theory.
dc.subject.other Artificial intelligence.
dc.subject.other Machine learning.
dc.subject.other Information architecture.
dc.subject.other Computers -- Machine Theory.
dc.subject.other Mathematical theory of computation.
dc.subject.other Machine learning.
dc.subject.other Computer algorithms.
dc.subject.other Computer algorithms.
dc.subject.other Machine learning.
dc.subject.other Electronic books.
dc.title Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning, 2nd Edition.
dc.type Book
dc.description.pages 1 online resource (514 pages)
dc.collection Электронно-библиотечные системы
dc.source.id EN05CEBSCO05C1259


Файлы в этом документе

Данный элемент включен в следующие коллекции

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика