Kazan Federal University Digital Repository

Application of neural network technology to calculate well logging porosity on the example of UK2-7 formations in the Yelizarovsky deflection (Western Siberia)

Show simple item record

dc.contributor.author Lisovskaya E.A.
dc.contributor.author Platov B.V.
dc.date.accessioned 2022-02-09T20:49:05Z
dc.date.available 2022-02-09T20:49:05Z
dc.date.issued 2021
dc.identifier.issn 2555-0403
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/170496
dc.description.abstract The article describes the use of an artificial neural network to calculate porosity in the West Siberian oil and gas province for the UK2-7 strata. The estimated porosity was compared with core porosity data. Correlation coefficient between core samples porosity and well logging porosity (using the neural network) showed higher values in comparison with traditional methods of porosity estimation.
dc.relation.ispartofseries E3S Web of Conferences
dc.title Application of neural network technology to calculate well logging porosity on the example of UK2-7 formations in the Yelizarovsky deflection (Western Siberia)
dc.type Conference Proceeding
dc.relation.ispartofseries-volume 266
dc.collection Публикации сотрудников КФУ
dc.source.id SCOPUS25550403-2021-266-SID85108216620


Files in this item

This item appears in the following Collection(s)

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics