Электронный архив

Convergence of the galerkin method for solving a nonlinear problem of the eigenmodes of microdisk lasers

Показать сокращенную информацию

dc.contributor.author Repina A.I.
dc.date.accessioned 2022-02-09T20:48:49Z
dc.date.available 2022-02-09T20:48:49Z
dc.date.issued 2021
dc.identifier.issn 2541-7746
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/170466
dc.description.abstract This paper investigates an eigenvalue problem for the Helmholtz equation on the plane modeling the laser radiation of two-dimensional microdisk resonators. It was reduced to an eigenvalue problem for a holomorphic Fredholm operator-valued function A(k). For its numerical solution, the Galerkin method was proposed, and its convergence was proved. Namely, a sequence of the finite-dimensional holomorphic operator functions An(k) that converges regularly to A(k) was constructed. Further, it was established that there is a sequence of eigenvalues kn of the operator-valued functions An(k) converging to k0 for each eigenvalue k0 of the operator-valued function A(k). If {kn}n∈N is a sequence of eigenvalues of the operator-valued functions An(k) converging to a number of k0, then k0 is an eigenvalue of A(k). The estimates for the rate of convergence of {kn}n∈N to k0 depend either on the order of the pole k0 of the operator-valued function A−1(k), or on the algebraic multiplicities of all eigenvalues of An(k) in a neighborhood of k0, or on the number of different eigenvalues of An(k) in this neighborhood. The reasoning is based on the fundamental results of the theory of holomorphic operator-valued functions and is important for the theory of mic-rodisk lasers, because it significantly expands the class of devices interesting for applications that allow mathematical modeling based on numerical methods that are strictly justified.
dc.relation.ispartofseries Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
dc.subject Galerkin method
dc.subject Microdisk laser
dc.subject Nonlinear eigenvalue problem
dc.subject System of Muller boundary integral equations
dc.title Convergence of the galerkin method for solving a nonlinear problem of the eigenmodes of microdisk lasers
dc.type Article
dc.relation.ispartofseries-issue 1
dc.relation.ispartofseries-volume 163
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 5
dc.source.id SCOPUS25417746-2021-163-1-SID85117928848


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика