Показать сокращенную информацию
dc.contributor.author | An K. | |
dc.contributor.author | Kohno R. | |
dc.contributor.author | Thiery N. | |
dc.contributor.author | Reitz D. | |
dc.contributor.author | Vila L. | |
dc.contributor.author | Naletov V.V. | |
dc.contributor.author | Beaulieu N. | |
dc.contributor.author | Ben Youssef J. | |
dc.contributor.author | De Loubens G. | |
dc.contributor.author | Tserkovnyak Y. | |
dc.contributor.author | Klein O. | |
dc.date.accessioned | 2022-02-09T20:48:32Z | |
dc.date.available | 2022-02-09T20:48:32Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 2469-9950 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/170434 | |
dc.description.abstract | Using the spin Seebeck effect (SSE), we study the propagation distance of thermally induced spin currents inside a magnetic insulator thin film in the short-range regime. We disambiguate spin currents driven by temperature and chemical potential gradients by comparing the SSE signal before and after adding a heat-sinking capping layer on the same device. We report that the measured spin decay behavior near the heat source is well accounted for by a diffusion model where the magnon diffusion length is in submicron range, in other words, two orders of magnitude smaller than previous estimates inferred from the long-range behavior. Our results highlight the caveat in applying a diffusive theory to describe thermally generated magnon transport, where a single decay length may not capture the behavior on all length scales. | |
dc.relation.ispartofseries | Physical Review B | |
dc.title | Short-range thermal magnon diffusion in magnetic garnet | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 17 | |
dc.relation.ispartofseries-volume | 103 | |
dc.collection | Публикации сотрудников КФУ | |
dc.source.id | SCOPUS24699950-2021-103-17-SID85107151864 |