dc.contributor.author |
An K. |
|
dc.contributor.author |
Kohno R. |
|
dc.contributor.author |
Thiery N. |
|
dc.contributor.author |
Reitz D. |
|
dc.contributor.author |
Vila L. |
|
dc.contributor.author |
Naletov V.V. |
|
dc.contributor.author |
Beaulieu N. |
|
dc.contributor.author |
Ben Youssef J. |
|
dc.contributor.author |
De Loubens G. |
|
dc.contributor.author |
Tserkovnyak Y. |
|
dc.contributor.author |
Klein O. |
|
dc.date.accessioned |
2022-02-09T20:48:32Z |
|
dc.date.available |
2022-02-09T20:48:32Z |
|
dc.date.issued |
2021 |
|
dc.identifier.issn |
2469-9950 |
|
dc.identifier.uri |
https://dspace.kpfu.ru/xmlui/handle/net/170434 |
|
dc.description.abstract |
Using the spin Seebeck effect (SSE), we study the propagation distance of thermally induced spin currents inside a magnetic insulator thin film in the short-range regime. We disambiguate spin currents driven by temperature and chemical potential gradients by comparing the SSE signal before and after adding a heat-sinking capping layer on the same device. We report that the measured spin decay behavior near the heat source is well accounted for by a diffusion model where the magnon diffusion length is in submicron range, in other words, two orders of magnitude smaller than previous estimates inferred from the long-range behavior. Our results highlight the caveat in applying a diffusive theory to describe thermally generated magnon transport, where a single decay length may not capture the behavior on all length scales. |
|
dc.relation.ispartofseries |
Physical Review B |
|
dc.title |
Short-range thermal magnon diffusion in magnetic garnet |
|
dc.type |
Article |
|
dc.relation.ispartofseries-issue |
17 |
|
dc.relation.ispartofseries-volume |
103 |
|
dc.collection |
Публикации сотрудников КФУ |
|
dc.source.id |
SCOPUS24699950-2021-103-17-SID85107151864 |
|