Показать сокращенную информацию
dc.contributor.author | KHARSHILADZE O. | |
dc.contributor.author | BELASHOV V. | |
dc.contributor.author | BELASHOVA E. | |
dc.date.accessioned | 2022-02-09T20:48:05Z | |
dc.date.available | 2022-02-09T20:48:05Z | |
dc.date.issued | 2021 | |
dc.identifier.issn | 2346-8092 | |
dc.identifier.uri | https://dspace.kpfu.ru/xmlui/handle/net/170382 | |
dc.description.abstract | The results of numerical study of evolution of the solitons of gravity and gravity-capillary waves on the surface of a shallow uid, when the characteristic wavelength is essentially greater than the depth, λ ≫ H, are presented for the cases when dispersive parameter is a function of time, and the spatial coordinates β = β (t; x; y). This corresponds to the problems when the relief of the bottom is changed in time and space. We use both the one-dimensional approach (the equations of the KdV-class) and also two-dimensional description (the equations of the KP-class), in case of need. | |
dc.relation.ispartofseries | Transactions of A. Razmadze Mathematical Institute | |
dc.subject | Dispersion | |
dc.subject | Evo- lution | |
dc.subject | Gravity waves | |
dc.subject | Gravity-capillary waves | |
dc.subject | KdV-class equations | |
dc.subject | KP-class equations | |
dc.subject | Nonlinearity | |
dc.subject | Numerical study | |
dc.subject | Shallow uid | |
dc.subject | Solitons | |
dc.subject | Stable and unstable solutions | |
dc.subject | Structure | |
dc.subject | Varying relief of bottom | |
dc.title | Solitons on a shallow fluid of variable depth | |
dc.type | Article | |
dc.relation.ispartofseries-issue | 2 | |
dc.relation.ispartofseries-volume | 175 | |
dc.collection | Публикации сотрудников КФУ | |
dc.relation.startpage | 215 | |
dc.source.id | SCOPUS23468092-2021-175-2-SID85110147691 |