Электронный архив

Comparative analysis of monocular slam algorithms using tum and euroc benchmarks

Показать сокращенную информацию

dc.contributor.author Mingachev E.
dc.contributor.author Lavrenov R.
dc.contributor.author Magid E.
dc.contributor.author Svinin M.
dc.date.accessioned 2022-02-09T20:47:10Z
dc.date.available 2022-02-09T20:47:10Z
dc.date.issued 2021
dc.identifier.issn 2190-3018
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/170273
dc.description.abstract Stable and robust path planning and movement in ground mobile robots require a combination of accuracy and low latency in their state estimation. However, state estimation algorithms must provide these qualities under the computational and power constraints of embedded hardware. Simultaneous localization and mapping (SLAM) algorithms are the best choices for state estimation in these scenarios, in addition to their ability to operate without external localization from motion capture or global positioning systems. Moreover, a single-camera setup is the most common solution for robotic platforms, which reduces our domain of interest to the specific SLAM algorithms type—monocular SLAM. Yet, it is still not clear from the existing literature, which monocular SLAM algorithms perform well under the accuracy, latency, and computational constraints of a ground mobile robot with onboard state estimation. This paper evaluates an array of the most recent publicly available monocular SLAM methods: ORB-SLAM2, DSO, and LDSO. The evaluation considers the pose estimation accuracy (alignment error, absolute trajectory error, and relative pose error) while processing the TUM Mono and EuRoC datasets on the specific hardware platform with a balanced amount of computational resources and power consumption. We present our complete results as a benchmark for the research community.
dc.relation.ispartofseries Smart Innovation, Systems and Technologies
dc.subject Benchmark testing
dc.subject Robot sensing systems
dc.subject Simultaneous localization and mapping
dc.subject SLAM
dc.subject State estimation
dc.subject Visual odometry
dc.subject Visualization
dc.title Comparative analysis of monocular slam algorithms using tum and euroc benchmarks
dc.type Conference Proceeding
dc.relation.ispartofseries-volume 187
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 343
dc.source.id SCOPUS21903018-2021-187-SID85091177868


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика