Электронный архив

A vision-based robust adaptive control for caging a flood area via multiple UAVs

Показать сокращенную информацию

dc.contributor.author Ma J.
dc.contributor.author Guo D.
dc.contributor.author Bai Y.
dc.contributor.author Svinin M.
dc.contributor.author Magid E.
dc.date.accessioned 2022-02-09T20:46:15Z
dc.date.available 2022-02-09T20:46:15Z
dc.date.issued 2021
dc.identifier.uri https://dspace.kpfu.ru/xmlui/handle/net/170163
dc.description.abstract This paper presents a control strategy for caging a flood area via multiple UAVs. The strategy consists of the following parts. A novel architecture for video segmentation, Multiscale Features Fusion based MobileNet (MFFM-Net), is constructed to detect the flood boundary. A Function Approximation Technique based Immersion and Invariance (FATII) tracking controller is employed to constrain a single UAV on the flood boundary in the presence of external disturbances. A flocking based formation controller is designed to uniformly distribute UAVs along the flood boundary without collisions among neighbours. The proposed strategy has been verified through simulations under the ROS/Gazebo environment.
dc.title A vision-based robust adaptive control for caging a flood area via multiple UAVs
dc.type Conference Proceeding
dc.collection Публикации сотрудников КФУ
dc.relation.startpage 386
dc.source.id SCOPUS-2021-SID85112460103


Файлы в этом документе

Данный элемент включен в следующие коллекции

  • Публикации сотрудников КФУ Scopus [24551]
    Коллекция содержит публикации сотрудников Казанского федерального (до 2010 года Казанского государственного) университета, проиндексированные в БД Scopus, начиная с 1970г.

Показать сокращенную информацию

Поиск в электронном архиве


Расширенный поиск

Просмотр

Моя учетная запись

Статистика